
Graphs with Large Overlap in Their Spanning Trees

Pablo Blanco∗

Abstract

The overlap of a spanning tree of a graph is one way to measure how much its fundamental cycles
intersect. In this paper, we show that there is a family of graphs with bounded treewidth and bounded
degree but no spanning tree of small overlap. This paper also discusses a connection to a recently
answered question by Zdeněk Dvořák.

1 Introduction

The main theorem of this paper, presented below, tells us that the overlap parameter is not bounded by
any function of treewidth for general graphs. We define both parameters later in this section.

Theorem 1. For every integer k ≥ 2, there is a connected graph G with maximum degree 3 such that
tw(G) = 2 and overlap(G) ≥ k.

A tree decomposition of a connected graph G is a pair (T,B) such that T is a tree and B is a function
which maps each x ∈ V (T) to a set B(x) ⊆ V (G), with the following properties:

• The collection {B(x) : x ∈ V (T)} covers V (G). That is, we have
⋃

x∈V (T) B(x) = V (G).

• For every edge uw ∈ E(G), there is some x ∈ V (T) such that u,w ∈ B(x).

• For every u ∈ V (G), its preimage B−1(u) ⊆ V (T) induces a connected subgraph of T .

The width of a tree decomposition (T,B) is the maximum of |B(x)|−1 taken over x ∈ V (T). The treewidth
of a graph G, denoted tw(G), is the minimum width over its tree decompositions.

Given a spanning tree T of G, we denote the fundamental cycle of an edge e ∈ E(G) \E(T) with respect
to T by CT

e; we sometimes write PT
e := CT

e − e. We define the overlap of a spanning tree T with
respect to G, denoted by overlap(T,G), as the maximum size of a set S ⊆ E(G) \ E(T) which satisfies∣∣⋂

e∈S E(PT
e)
∣∣ ≥ |S|. Whenever |S| ≥ 2, it is equivalent to consider

⋂
e∈S E(CT

e) and we will use this
fact throughout the paper.

For a graph G, we define its overlap to be the minimum overlap(T,G) across all of its spanning trees
and denote it by overlap(G). For convenience of notation, we will often write overlap(T) instead of
overlap(T,G) whenever G is clear from context.

Informally, the overlap tells us if a graph has a spanning tree with sets of fundamental cycles that do not
intersect much. In particular, if the overlap of a graph is equal to b ≥ 2 and T is a spanning tree with
overlap b, then we can deduce two facts:

∗Department of Mathematics, Princeton University, Princeton, USA.

3

• If C is a collection of fundamental cycles from T with |C| ≥ b, then |
⋂

C∈C E(C)| ≤ b.

• Any spanning tree T ′ of the graph has a collection of fundamental cycles CT ′ of size b such that
|
⋂

C∈C E(C)| ≥ b.

Loopless graphs with overlap 0 are exactly trees. One might expect that if a graph "looks" like a tree
according to the treewidth, then it also has a nice spanning tree in terms of overlap; however, Theorem 1
rejects this notion strongly. We give an outline of further sections below.

In Section 2, we give further background on treewidth and related parameters; such as the treedepth,
which can bound the longest path of a graph. In Section 3, we briefly discuss a weaker notion of overlap
and Corollary 7 which the author, alongside [2], used to prove the theorem below (and resolved a problem
posed by Zdeněk Dvořák in [4]):

Theorem 2. [2] For every positive integer k, there is a connected graph G of treewidth 2 such that if
(T,B) is a tree decomposition of G and T is a minor of G, then (T,B) has width at least k.

Robert Hickingbotham independently proved Corollary 7 in [5, Theorem 7.5.1] with a different construc-
tion. Section 4 provides most of the set-up for the proof of Theorem 1, while Section 5 introduces the most
important ideas and proves Theorem 1. Lastly, we discuss future directions in Section 6 while proving
further properties of the overlap and providing a conjecture regarding a minor-closed class with bounded
overlap.

2 Background on Treewidth Boundedness

In this section, we discuss some facts relating to treewidth, related parameters, and their connection to
overlap. Any graphs are assumed to be simple unless stated otherwise. We will often use the notation
below.

Notation. We denote [k] := {1, ..., k}.

The concept of treewidth was first introduced in 1972 under a different name by Umberto Bertelè and
Francesco Brioschi [1]. In their book, they define a parameter they call the (scalar) dimension of a graph.
Consider an ordering of V (G) given by Ω = (v1, v2, . . . , vn); the graph GΩ

i with i ∈ {0, 1, . . . , n} is obtained
from GΩ

i−1 by making every vertex in N(vi) ∩ {vj : j > i} adjacent and then deleting vi with GΩ
0 := G.

The scalar dimension of G is

min
Ω

{
max

i∈{1,...,n}
degGΩ

i−1
(vi)

}
over all vertex orderings Ω of V (G). We will prove that the scalar dimension of G is the same as its
treewidth. First, we begin with a lemma of tree decompositions.

Lemma 3. Let (T,B) be a tree decomposition of G. If K is a clique of G, then there is some x ∈ V (T)

for which K ⊆ B(x).

Proof. We may assume |K| ≥ 2. Suppose the claim does not hold for a contradiction. Let T ′ be a
minimal subtree of T such that K ⊆

⋃
u∈V (T) B(u). By assumption, |V (T ′)| ≥ 2 so we can find two

distinct leaves u, u′ ∈ V (T ′). By the minimality of T ′, there are distinct vertices v, v′ ∈ K such that
B−1(v)∩ V (T ′) = {u} and B−1(v′)∩ V (T ′) = {u′}. However, because vv′ ∈ E(G), we can find a vertex of
V (T ′) in B−1({v, v′}), but this contradicts the minimality of T ′!

4

The following lemma shows the equivalence between the scalar dimension of a graph and its treewidth.

Lemma 4. A graph G on n vertices has scalar dimension t if and only if tw(G) = t.

Proof. We will say that a vertex ordering Ω of G has dimension m if

max
i∈{1,...,n}

degGΩ
i−1

(vi).

For this proof, we will prove the stronger claim that a graph G has a vertex ordering of dimension t if and
only if it has a tree decomposition of width t.

Let Ω = (v1, . . . , vn) be a vertex ordering satisfying scalar dimension t. We induct on |V (G)|. The base case
(n=1) is satisfied immediately. Next, we consider the inductive step. Let G′ be the graph obtained from G

by taking V (G′) = V (G) and E(G′) =
⋃

i∈{0,...,n}E(GΩ
i). By assumption, we can find a tree decomposition

(T,B) of G′ − v1 corresponding to vertex ordering (v2, . . . , vn) (that is, the tree decomposition has width
maxi∈{2,...,n} degGΩ

i−1
(vi)). From Lemma 3, we can find x ∈ V (T) such that N(v1) ⊆ B(x). Let T ′ be

obtained by adding a leaf y to T adjacent to x; define B′(y) = N(v1) ∪ {v1} and B′(z) := B(z) for all
z ∈ V (T). We can verify that (T ′,B′) is a tree decomposition of G with treewidth t.

Next, we suppose that G has treewidth t. Let (T,B) be a minimal tree decomposition with width t. Let t1
be a leaf of T . Label the remaining vertices of T by t2, . . . , tm such that ti is a leaf of Ti := T−{t1, . . . , ti−1}.
Let si be the neighbor of ti in Ti for i ∈ [m − 1]. Let U1 := B(t1) \ B(s1) which is non-empty by the
minimality assumption. For i ≥ 2, we take Ui := B(ti) \

(⋃i−1
j=1 Uj ∪ B(si)

)
(take Um := ∅). Let Ω be

a vertex ordering of G satisfying (U1, U2, . . . , Um) so that all vertices in Ui are ordered such that they
are immediately after vertices in Ui−1. By construction, the only neighbors in G −

⋃i−1
j=1 Uj each vertex

v ∈ Ui ⊆ V (G) has are in B(ti). In particular, this means the scalar dimension of Ω is max |B(ti)| − 1 = t.

An edge contraction of an edge e = xy ∈ E(G) of a graph is the graph operation resulting in a graph G′

by deleting e and identifying the vertices x = y (replace x and y with a vertex whose neighborhood is the
union of x and y). We say H is a minor of G if it can be obtained from G by a sequence of edge deletions,
vertex deletions, and edge contractions.

Since its re-introduction by Robertson and Seymour, treewidth has found applications in relation to graph
minors. In particular, the Robertson-Seymour Grid Minor Theorem [8] characterizes graphs with large
treewidth as having a large grid graph as a minor. The same theorem was used in Robertson and Seymour’s
proof of the Graph Minor Theorem [7] – which says that every graph class closed under taking minors can
be characterized by forbidding a finite number of graphs as minors.

Another parameter related to treewidth is the treedepth of a graph. The treedepth of a graph G is obtained
by constructing a set of rooted trees on V (G) in a certain way, considering the length of the longest leaf-
to-root in each tree, then letting the treedepth be the shortest such length among these rooted trees. We
outline below how each rooted tree is constructed, iteratively:

• Pick some vertex v0 ∈ V (G). This will be the root of the tree.

• Consider the components of G1 := G− v0. Let I1 be the collection of components of G1. Pick a vertex
v1i from each component of G1, with i ∈ [|I1|]. Make each v1i adjacent to v0 in the tree.

5

• For j ≥ 2, let Gj := G − v0 −
⋃j−1

l=1

(
{vli}i∈[|Il]

)
. Let Ij be the collection of components of Gj . Pick a

vertex vji , with i ∈ [|Ij |] from each component Ci of Gj . For each vji there is a unique u ∈ {vj−1
i }i∈[|Ij−1|]

that is in the same component of Gj−1 as vji ; make vji adjacent to u.

• When Gj is the empty graph, the resulting graph is the desired tree.

From [6, Inequality (2)], the treedepth of a graph G is related to its longest path (lp) as follows:

log2(lp(G) + 1) ≤ td(G) ≤ lp(G).

From its definition, we can see that overlap(G) ≤ lp(G), from which it follows that

Observation 5.

overlap(G) ≤ 2td(G) − 1.

3 Treewidth and Overlap

In this section, we discuss a weakening of the overlap parameter and some results for graphs satisfying
this weaker parameter.

We define weak-overlap(G) as follows:

weak-overlap(G) := min
T

{max{|S| : S ⊆ E(G) \ E(T) and
⋂
e∈S

E(PT
e) ̸= ∅}}

where the minimum is over all spanning trees T of G. From the previous definition, it follows that
weak-overlap(G) ≥ overlap(G). The proof for the next lemma is adapted from [2, Lemma 4.3] and
shows one way in which overlap relates to treewidth.

Lemma 6. [2] Fix some k ∈ N. If G is a graph with max degree ∆ and weak-overlap(G) ≥ 2∆k, then
any tree decomposition (T,B) of G such that T is a spanning tree of G and v ∈ B−1(v) for all v ∈ V (G)

has width(T,B) ≥ k.

Proof. Let k,∆, G, and (T,B) be as described in the lemma statement. We begin by finding an edge-set
S ⊆ E(G) \ E(T) of size 2∆k satisfying the weak-overlap(G) ≥ 2∆k condition.

We can deduce that there is a matching of size k + 1 inside S. Otherwise, the largest matching of S

would be size ≤ k; there would be ≤ 2(∆ − 1)k edges of S not in the matching and, consequently,
|S| ≤ k(1 + 2(∆− 1)) < 2∆k which is a contradiction!

Let S′ := {u1v1, . . . , uk+1vk+1} be a matching of size k+1 in S. Let x ∈
⋂

e∈S′ V (CT
e). By construction,

x is in the path P i between ui and vi in T for every i ∈ {1, . . . , k + 1}. We know that the trees
Tui := T [B−1(ui)] and Tvi := T [B−1(vi)] intersect because uivi ∈ E(G). Furthermore, since Tui and Tvi

are connected in T , with ui ∈ Tui and vi ∈ Tvi , we find that every vertex of Puivi is in V (Tui) ∪ V (Tvi).
As a result, x ∈ V (Tui) ∪ V (Tvi). That is, ui ∈ B(x) or vi ∈ B(x) for all i ∈ {1, . . . , k + 1}. Since S′ is a
matching, we have that |B(x)| ≥ k + 1 and the width of (T,B) is at least k.

Corollary 7. Let k ≥ 2 be a positive integer. There is a connected graph G with tw(G) = 2 for which
any tree decomposition (T,B) of G such that T is a spanning tree of G with v ∈ B−1(v) for all v ∈ V (G)

has width(T,B) ≥ k

6

Proof. Apply Lemma 6 to the graph obtained from Theorem 1.

Corollary 7 was used to prove the following result regarding tree decompositions where the trees are minors
[2, Theorem 2]:

Theorem 2. [2] For every positive integer k, there is a connected graph G of treewidth 2 such that if
(T,B) is a tree decomposition of G and T is a minor of G, then (T,B) has width at least k.

Robert Hickingbotham independently proved Corollary 7 in [5, Theorem 7.5.1] using a different approach,
but the connection to overlap is new.

4 Preliminaries

In this section, we introduce the graph class of "reflected-trees" which we will use to prove Theorem 1 and
prove some basic facts about them.

We say a rooted binary tree has depth k if every vertex that is not the root or a leaf has degree 3 and every
leaf has the same path length (k) to the root. A reflected-tree is a graph G which is obtained by taking two
copies of a rooted binary tree with depth k and identifying, or "pasting", the leaves of each copy according
to the trivial isomorphism between the copies; furthermore, we say that the binary tree constructs G. We
write Rk for the reflected-tree constructed from pasting two binary trees of depth k − 1 ≥ 1. We call a

u2 v2

u3 v3

u2 v2

u′2 v′2

Figure 1: The reflected-tree R4 of depth 3 (right, with root vertices larger and in
red) being constructed from the reflected-tree R3 of depth 2 (left).

vertex of a reflected-tree G a root vertex if it is a root of the rooted binary tree which constructs G. Given
a reflected-tree G and a spanning tree T of G, we say that e ∈ E(G) \ E(T) is a root edge from T if it is
adjacent to a root vertex of G. Whenever the spanning tree is clear, we simply say root edge.

Note that a reflected-tree G with a spanning tree T has at most one root edge from T . If there is a root
edge, we say T is a Type-1 spanning tree; otherwise, we say T is Type-2.

If we remove the root vertices of a reflected-tree graph Rk+1, the resulting components are isomorphic to
Rk (as proven in the following lemma) and we call these Rk-subgraphs of Rk+1 or reflected-tree subgraphs.
We say a spanning tree T of Rk is Type-1 everywhere if, for any Rj-subgraph H of Rk (with j ≤ k), we
have that T [V (H)] is a Type-1 spanning tree of H.

7

Lemma 8. If u, v are the root vertices of G = Rk+1 with k ≥ 2, then the two components of G − {u, v}
are isomorphic to Rk.

Proof. If T is a rooted binary tree of depth k+1 and we remove its root, the remaining (two) components
are binary trees of depth k. Therefore, from the definition of root vertex and the construction of reflected-
trees, it follows that the (two) components of G− {u, v} are isomorphic to Rk.

Corollary 9. The two Rk-subgraphs of Rk+1 are disjoint.

Lemma 10. Let k ≥ 3, G = Rk, and T be a Type-2 spanning tree of G, X ⊂ V (G) such that G[X]

is an Rk−1-subgraph and T [X] is connected. There is an edge e ∈ E(G) \ (E(G[X]) ∪ E(T)) such that
E(PT

e) ∩ E(T [X]) ̸= ∅.

Proof. Let X ′ ⊆ V (G) be the other vertex-set X ̸= X ′ such that G[X ′] is an Rk−1-subgraph. Note that
T [X ′] is not connected because T is Type-2 (it has no root edges). As a result, we can find some edge
e ∈ G[X ′] \ T [X ′] ⊆ E(G) \ (E(G[X])∪E(T)) such that T [X ′] + e is connected. We can deduce that G is
the minimal reflected-tree subgraph which contains CT

e. In particular, the root vertices of G are in CT
e;

the path between the root vertices in T intersects T [X] so that E(PT
e) ∩ E(T [X]) ̸= ∅.

We call an edge a parallel edge if it is not a unique edge between two vertices.

Definition. A graph is called Series-Parallel if it can be constructed from the empty graph using the
following operations:

• Adding a vertex of degree ≤ 1.

• Adding a loop or a parallel edge.

• Subdividing an edge.

Note that the definition above allows for non-simple graphs.

Observation 11. Reflected-trees are Series-Parallel. We can construct R3 from R2 using Series-Parallel
operations (illustrated in Figure 2). Thus, we can induct on Rk from Rk−1 using Series-Parallel operations
by turning each R2-subgraph into an R3.

Step 1 Step 2 Step 3

Figure 2: Construction of R3 from R2 using Series-Parallel operations. Obtain Step
2 from subdividing the thick blue edges in Step 1. Obtain Step 3 by adding one edge
parallel to each thick blue edge in Step 2, then subdividing all four parallel edges.

8

Lemma 12. Any reflected-tree G has tw(G) = 2.

Proof. Reflected-trees are connected, but not trees. So, tw(G) ≥ 2. To show tw(G) ≤ 2 we will show
that tw(H) ≤ 2 for any series-parallel graph H (reflected-trees are series-parallel). It suffices to show that
if H ′ is obtained from H (with tw(H) ≤ 2) from a single Series-Parallel operation, then tw(H ′) ≤ 2. Let
(T,B) be a tree decomposition of H with width ≤ 2.

Adding a vertex w of degree ≤ 1: Let N(w) be the set of neighbors of w in H. Pick t ∈ V (T) such that
N(w) ⊆ B(s) (such t exists because |N(w)| ≤ 1). Construct a tree T ′ by adding a leaf t′ to T which is
only adjacent to t. Construct B′ by extending the map B such that B′(t′) = {w} ∪N(w). Then, (T ′,B′)

is a tree decomposition of H ′ with width ≤ 2.

Adding a parallel-edge or a loop: Any tree decomposition of H is also a tree decomposition of H ′ in this
case.

Subdividing an edge uv by adding a vertex w: Let t ∈ V (T) be such that B(t) = {u, v}. Construct T ′ by
adding a leaf t′ adjacent to t. Extend B to B′ by defining B′(t′) = {u, v, w}. The resulting pair (T ′,B′) is
a tree decomposition of H ′ with width ≤ 2

5 Main Result

This section contains the proof of Theorem 1 and key facts used to prove it.

Definition. If G is a reflected-tree and T is a spanning tree of G, we say an ordered set of edges
e1, . . . , em ∈ E(G) \ E(T) has strictly nested trees if there are vertex sets X1, . . . , Xm ⊆ V (G) satisfying:

• T [X1] ⊊ . . . ⊊ T [Xm] and, for each i ∈ [m], T [Xi] is a tree.

• For all i ∈ [m], Xi is minimal such that G[Xi] is a reflected-tree subgraph of G with E(CT
ei)−ei ⊆ T [Xi].

We say the vertex-sets X1, . . . , Xm are accompanying if they satisfy the above properties according to
e1, . . . , em. This next lemma tells us how edges with strictly nested trees intersect.

Lemma 13. Let G be a reflected-tree and T a spanning tree of G. If e1, e2 ∈ E(G) \ E(T) have strictly
nested trees with accompanying vertex-sets X1, X2 (respectively) and

E(CT
e1) ∩ E(CT

e2) ̸= ∅,

then

E(CT
e1) ∩ E(CT

e2) = E(PT
1)

where PT
1 is the path in T between the root vertices of G[X1].

Proof. Let u1, v1 be the root vertices of G[X1].

Claim 1.

u1, v1 ∈ V (CT
e1)

Proof. Observe that, by minimality of X1, we have u1 ∈ V (CT
e1) or v1 ∈ V (CT

e1). Assume u1 ∈ V (CT
e1).

Since G[X1]−{u1, v1} has two components and u1 ∈ V (CT
e1), we have v1 ∈ V (CT

e1) or else CT
e1 cannot

be a cycle in G.

9

A corollary of the previous claim is the following:

E(PT
1) ⊆ E(CT

e1). (1)

Since u1 and v1 are root vertices of G[X1], they are also the only vertices in X1 incident to edges with ends
in vertex-set X2 \X1. In particular, if a path intersects T [X1] edge-wise and has edges not in E(T [X1]),
then it contains the vertices u1, v1 and, thus, the path PT

1. The path CT
e2 − e2 satisfies these properties,

so:

E(CT
e1) ∩ E(CT

e2) ⊆ E(CT
e1) ∩ E(T [X1]) = E(PT

1). (2)

Using E(PT
1) ⊆ E(CT

e2) along with (1) and (2), we can obtain our result that:

E(CT
e1) ∩ E(CT

e2) = E(PT
1).

Lemma 14. Let G be a reflected-tree of depth k ≥ 1 and T be a spanning tree of G. For all m ≤ k,
there is an ordered set of edges e1, . . . , em ∈ E(G) \ E(T) that has strictly nested trees and satisfying the
following (if m ≥ 2)

m⋂
i=1

E(CT
ei) = E(PT

1)

where PT
1 is the path in T between the root vertices of G[X1] and X1 is the vertex-set accompanying e1.

Proof. We begin by constructing a set of edges with strictly nested trees. It suffices to prove the claim
for m = k (a subset of an edge-set with strictly nested trees also has strictly nested trees). We can induct
on the depth k. For the base case, k = 1 and G is a cycle on four vertices; E(G) \ E(T) is a single edge
and it satisfies the strictly nested trees property.

For the inductive step, assume the claim holds for any reflected-tree of depth k − 1 (and spanning tree of
it) and let G be a reflected-tree of depth k. Let Y and Y ′ be the vertex sets for the two Rk-subgraphs of
G. We may assume T [Y] is the component which intersects the path in T between the root vertices of G
edge-wise. From this choice, T [Y] is connected. By assumption, we can find a set of edges e1, . . . , ek−1 ∈
E(G[Y])\E(T [Y]) that has strictly nested trees corresponding to X1, . . . , Xk−1; note that T [Xk−1] ⊆ T [Y].
Let Xk := V (G). If T is Type-1, we let ek be the root-edge from T ; otherwise, T [Y ′] is not connected, and
pick ek according to Lemma 10. In both cases, we see that E(CT

ek)−ek ̸⊆ T [Y] and E(CT
ek)−ek ̸⊆ T [Y ′].

Hence, Xk is minimal such that T [Xk] ⊋ T [Xk−1] is a tree and G[Xk] is a reflected-tree subgraph of G
with E(CT

ek)− ek ̸⊆ T [Xk]. As a result, if G has depth k, the edge-set e1, . . . , ek has strictly nested trees
and is size k.

Next, we prove the second part of the lemma. By our inductive construction of e1, . . . , em we can apply
Lemma 13 for m > 2 repeatedly and the desired result follows:

m⋂
i=1

E(CT
ei) = E(PT

1).

The lemma that follows tells us that, in some sense, Type-1-everywhere spanning trees minimize the
intersection of fundamental cycles of a set of edges of fixed size.

10

Lemma 15. Let T be a Type-1-everywhere spanning tree of G, a reflected-tree of depth k ≥ 1, and T ′ be a
different spanning tree of G. If E1 ⊆ E(G)\E(T), then there is some E2 ⊆ E(G)\E(T ′) with |E1| = |E2|
and such that ∣∣∣∣∣∣

⋂
e∈E1

E(CT
e)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
⋂
e∈E2

E(CT ′e)

∣∣∣∣∣∣ .
Proof. To start the proof, we first prove some facts about E1.

Claim 2. We may assume the edges of E1 can be ordered so that they have strictly nested trees.

Proof. We begin by noting that for any pair of edges e, e′ ∈ E1 we can find vertex sets X,X ′ ⊆ V (G)

such that e ∈ E(G[X]) and e ∈ E(G[X ′]) such that T [X] and T [X ′] are spanning trees of a minimum-
size reflected-tree subgraph. Furthermore, if T [X] and T [X ′] is disjoint for any such pair of edges, their
fundamental cycles (contained in the respective spanning tree) are also disjoint. Consequently, we have
T [X] ⊊ T [X ′] or T [X ′] ⊊ T [X] because T is Type-1-everywhere.

If
⋂

e∈E1
E(CT

e) = ∅, then the lemma is satisfied vacuously so we assume otherwise and order the edges
e1, . . . , el ∈ E1 so that they have strictly nested trees with accompanying sets X1, . . . , Xl. We note that
all T [Xi] are distinct – every ei is a root edge from T [Xi] because T is Type-1-everywhere; as a result, by
the minimum-size condition, we have that ei is a root edge from T [Xi] and each T [Xi] has exactly one root
edge. For the same reason and because T is Type-1-everywhere, we can also assume that |E1| = l ≤ k.

Lemma 15 holds whenever l = 1 because we can take e′1 ∈ E2 to either be a root edge of T ′ (if T ′ is
Type-1) or an edge in the Rk-subgraph of G = Rk+1 disconnected (in T ′) which has fundamental cycle of
the same length. It only remains to show the lemma holds for l ≥ 2.

Claim 3. Lemma 15 holds when l ≥ 2.

Proof. The ordered edges e1, . . . , el of E1 are strictly nested so they satisfy Lemma 13. The spanning tree
T is Type-1-Everywhere so e1, . . . , el are root edges of some reflected-tree subgraphs and the maximum
length of the path between root vertices of G[X1] is 2(k − l + 1). Then, we have∣∣∣∣∣∣

⋂
e∈E1

E(CT
e)

∣∣∣∣∣∣ ≤ 2(k − l + 1). (3)

Let f1, . . . , fk be the ordered set of edges obtained from Lemma 14 with respect to T ′ with accompa-
nying vertex-sets X ′

1, . . . , X
′
k. In the construction of the edge-set from Lemma 14, we found an edge

fi corresponding to a reflected-tree subgraph G[Xi] of depth i for all i ∈ [k]. Relabel fk−l+1, . . . , fk as
{e′1, . . . , e′l} =: E2 (such that E2 still has strictly nested trees in this ordering). Apply Lemma 13 to E2

and observe that G[X ′
k−l+1] is a reflected-tree subgraph of depth k − l + 1:

2(k − l + 1) =

∣∣∣∣∣∣
⋂
e∈E2

E(CT ′e)

∣∣∣∣∣∣ . (4)

Combining (3) and (4) prove the claim whenever l ≥ 2.

11

Lemma 16. Let k ≥ 2 be an integer. There is a Type-1-everywhere spanning tree T of Rk for which

overlap(T) = overlap(Rk).

Proof. Let T ′ be a spanning tree T of Rk satisfying overlap(T ′) = overlap(Rk). If T ′ is Type-1
everywhere we are done if we set T = T ′. Otherwise, let T be a spanning tree of Rk. We can apply
Lemma 15 to T and T ′, to deduce that overlap(T) ≤ overlap(T ′) so that overlap(T) = overlap(Rk).

Theorem 1. For every integer k ≥ 2, there is a connected graph G with maximum degree 3 such that
tw(G) = 2 and overlap(G) ≥ k.

Proof. Let j = 3k. Consider G = Rj . By Lemma 16, there is a Type-1-everywhere spanning tree
T of G with overlap(T) = overlap(Rj). Let uj and vj be the root vertices of G and P j the path
between them in T . From the construction of reflected-trees, we can label the vertices along P j =

ujuj−1 . . . u2u1v2 . . . vj−1vj such that each ui and vi are both root vertices of the same Ri-subgraph Hi of
G for all i ∈ {1, . . . , j}; in this labelling, we let v1 = u1.

Let P i ⊆ P j be the path between ui and vi in T . The tree T is Type-1-everywhere so for all i ≥ 2,
we can find a root edge ei with exactly one of ui or vi as an end. In particular, for l ≥ 2, we have
el, . . . , ej ∈ E(G)\E(T) such that

⋂j
i=l E(CT

ei) =
⋂j

i=l E(P i) = E(P l) from the construction of T . Next,
consider the edges e j

3
+1, . . . , ej , which are k distinct edges. Then,∣∣∣∣∣∣∣

j⋂
i= j

3
+1

E(CT
ei)

∣∣∣∣∣∣∣ =
∣∣∣E(P k+1)

∣∣∣ = 2k > k.

Therefore, overlap(G) ≥ k and we are finished.

6 Future Directions

In this section, we discuss future directions in which this work can be continued. One is in investigating
the ways in which pasting two graphs or trees affects the overlap.

Recall that in the construction of reflected-trees, we paste two copies of a binary tree along each other’s
leaves (by identifying them with their counterpart). We can also consider how pasting these two binary
trees along each other’s leaves in different ways affects the overlap of its spanning trees. As far as we
know, this always result in large overlap and we conjecture the following:

Conjecture 17. Let H and H ′ be copies of a rooted binary tree of depth k with vertex-sets of leaves L

and L′, respectively. For all k ≥ 2, let πk : L → L′ be a bijective map and:

• Gπk
be the graph obtained by taking G = H ∪H ′ but identifying u = πk(u) for all u ∈ L.

then, for every c ∈ N there exists some t such that overlap(Gπt) ≥ c.

There is also a construction where we paste three binary trees instead of two. We conjecture that this
graph class also has unbounded overlap:

12

Conjecture 18. If F is the class of graphs where each graph is obtained by pasting three copies of a rooted
binary tree of depth k ∈ N along their leaves (according to the trivial isomorphism), then for all c ∈ N
there is some G ∈ F satisfying:

overlap(G) ≥ c.

More generally, it may be beneficial to investigate how the overlap behaves under pasting two graphs along
their leaves. Next, we discuss some graphs with large overlap which we think could be responsible for
large overlap in general graphs.

The (k, p1, . . . , pk)-banana graph is the graph obtained from two vertices that have k (internally) vertex-
disjoint paths between them of length p1, . . . , pk. More generally, we call these banana graphs; whenever
k = p1 = . . . = pk, we simply call that graph a k-banana. Banana graphs are clearly planar and a
permutation of p1, . . . , pk does not change the type of banana the graph is. However, we will specify an
order of p1, . . . , pk to indicate which embedding into the plane we are using – we let p1 indicate the length
of the top path and pk the bottom path’s length. See Figure 3 for an illustration.

u v

Figure 3: A (3, 2, 3, 4)-banana graph with path ends u, v and its indicated embed-
ding into the plane.

We say a graph is a (k, p1, . . . , pk)-cycle if it is obtained from a cycle on k vertices by replacing the
edges p1, . . . , pk many parallel edges in sequence. We call a graph of this type a multi-cycle. Whenever
k = p1 = . . . = pk, we call the graph a k-multi-cycle. See Figure 4 (right graph) for an illustration.

The dual of the planar-embedding of a graph G is obtained by adding a vertex at every face and then
adding an edge between two face-vertices for every edge the two corresponding faces share in G. We call
the original graph, the primal graph. Given a (k, p1, . . . , pk)-banana graph it is easy to verify that its
dual is a (k, p1, . . . , pk)-cycle; that is, a cycle on k vertices with pi many parallel edges in sequence (see
Figure 4).

Unfortunately, bounding overlap by a constant is not closed under taking minors; the next observation
shows that it does not always hold that the subgraphs (and thus minors) of a graph G have smaller overlap.

Observation 19. For each graph H with overlap(H) ≥ 3, there is a graph G which contains H as a
subgraph and has

overlap(G) < overlap(H)

Proof. Construct G by adding an additional vertex v that is adjacent to all vertices in H. Then, the edges
with v as an end form the edge set of a spanning tree E(T) of G. Furthermore, E(H) = E(G) \ E(T).
The path length between any vertices of G in T is at most 2 so that overlap(G) ≤ 2 < overlap(H).

The following two lemmas explain why we might consider k-bananas and k-multi-cycles to be the reason
why graphs have large overlap.

13

Figure 4: To the left, the dual graph (black vertices with thin edges) of a (3, 2, 3, 4)-
banana graph (yellow vertices with thick edges). Compare to Figure 3. To the right,
the dual graph, a (3, 2, 3, 4)-cycle; drawn separately.

Lemma 20. Let k ≥ 1 be an integer. If G is a (k + 1)-banana, then

overlap(G) ≥ k.

Proof. Let T be a spanning tree of G. Let P1, . . . , Pk+1 be the k + 1 vertex-disjoint (except their ends)
paths of H with ends at u, v ∈ G. Since T is a tree, we can find e1, . . . , ek ⊆ E(G) \ E(T) distinct edges
so that there is no j for which ei1 , ei2 ∈ E(Pj) for j ∈ [k + 1] and i1, i2 ∈ [k]. There is also some path
Pi ⊂ T . Furthermore, E(Pi) ⊆

⋂
e∈{e1,...,ek}E(PT

e) so that overlap(T) ≥ k. In particular, this means
that overlap(G) ≥ k and the proof is finished.

Lemma 21. Let k ≥ 1 be an integer. If G is a (k + 1)-multi-cycle, then

overlap(G) ≥ k.

Proof. Let T be a spanning tree of G and V (G) := {v1, . . . , vk+1}. Without loss of generality, there must
be some i ∈ [k] for which there are distinct edges e1, . . . , ek, ek+1 ⊆ E(G) \ E(T) between vi and vi+1.
Since e1, . . . , ek are parallel edges, PT

e1 = . . . = PT
ek ; furthermore, there are no edges between vi and

vi+1 so that the path PT
e1 in T is length k. Thus, overlap(T) ≥ k for every spanning tree T of G and

overlap(G) ≥ k.

The following two results tell us that if we forbid a planar graph H to construct a class of graphs with
small overlap, then we must also forbid its dual. Edges in the primal graph are bijective to edges in the
dual graph (in particular, we may associate the primal edges to the dual edges they intersect); so, we
denote the dual edge of a primal edge e by e∗. We call a minimal non-empty edge-cut of a connected
graph a bond and then consider the following proposition from [3, Proposition 4.6.1]:

Lemma 22. [3] For any connected plane multigraph G, an edge set E ⊆ E(G) is the edge set of a cycle
in G if and only if E∗ := {e∗|e ∈ E} is a bond in G∗.

14

Lemma 23. If G is a planar graph with a fixed drawing on the plane and G∗ is its dual, then

overlap(G) = overlap(G∗).

Proof. We begin by noting that the dual G∗ is its primal graph, G. Therefore, it will be sufficient to
prove that overlap(G) ≤ overlap(G∗).

Claim 4. If T is a spanning tree of G and E := E(G) \ E(T), then E∗ is the edge-set of some spanning
tree T ∗ of G∗

Proof. Firstly, we observe that a spanning tree of a graph can be characterized as a subgraph which spans
the graph and contains exactly one edge from each bond (zero edges from a bond would disconnect the
graph and two would create a cycle). Note that E(G) \ E(T) is a set of edges such that there is exactly
one edge e for each cycle of G. By Lemma 22, this means that each bond has exactly one edge e∗ ∈ E∗;
as a result, E∗ is the edge-set of a spanning tree of G∗.

Claim 5. Let T, T ∗ be as in the previous claim, with e ∈ E(G) \ E(T) and f ∈ E(T). Then, the edge
f ∈ E(PT

e) if and only if e∗ ∈ E(PT ∗f
∗
)

Proof. Claim 4 ensures that the statement of this claim is well-defined. It’s sufficient to prove one side of
the implication because the dual of G∗ is its primal G. The edge f ∈ E(PT

e) if and only if e, f share a
cycle in G. By Lemma 22, this occurs if and only if e∗, f∗ are in the same bond of G∗. If e∗, f∗ are in the
same bond then they share a cycle in G∗ so that e∗ ∈ E(PT ∗f

∗
).

Let t = overlap(G). Then, we can find edges e1, . . . , et ∈ E(G) \E(T) such that there are edges distinct
edges f1, . . . , ft ∈ E(PT

ei) for all i ∈ [t]. By Claim 5, it follows that f1
∗, . . . , ft

∗ ⊆ E(G∗) \ E(T ∗) satisfy
that ei∗ ∈ E(PT ∗fi

∗
) ⊆ E(T ∗) for all i ∈ [t]. By definition, this means that overlap(G∗) ≥ t = overlap(G)

and the proof is complete.

If we wish to characterize the class of graphs with at most overlap c, then we must forbid the dual graphs
of every planar graph with overlap ≥ c. We conjecture that if we can bound the size of a banana or
multi-cycle minor in a family of graphs, then we can also bound the overlap of graphs in that family:

Conjecture 24. Let m ≥ 0 be an integer. If F is a family of graphs that has no k-banana minor and no
k-multi-cycle minor for k ≥ m, then there is an integer cm satisfying

overlap(G) ≤ cm

for every G ∈ F .

Conjecture 24 directly implies a version which forbids more general bananas and multi-cycles as minors.
Note that a reflected-tree Rk+1 of depth k, which has unbounded overlap (as a linear function of k),
contains a (2⌊k/2⌋, 2 ·

⌈
k
2

⌉
, . . . , 2 ·

⌈
k
2

⌉
)-banana as a minor. To see this, recall that a reflected-tree is

constructed from two binary trees of depth k; contract all edges at the ⌊k/2⌋ levels which are closest to
the "roots" – this gives two vertices of degree 2⌊k/2⌋ which have that many paths between them of length
2 · (k − ⌊k/2⌋).

15

7 Acknowledgements

The author would like to thank Rose McCarty for her guidance and Maria Chudnovsky for agreeing to
supervise this thesis.

References

[1] Umberto Bertelè and Francesco Brioschi, Nonserial dynamic programming, New York: Academic Press,
1972.

[2] Pablo Blanco, Linda Cook, Meike Hatzel, Claire Hilaire, Freddie Illingworth, and Rose McCarty, On
tree decompositions whose trees are minors, 2023.

[3] R. Diestel, Graph theory: 5th edition, Springer Graduate Texts in Mathematics, Springer-Verlag, ©
Reinhard Diestel, 2017.

[4] Zdeněk Dvořák, Problem 20 from the Barbados graph theory workshop in 2019, 2019.
[5] Robert Hickingbotham, Graph minors and tree decompositions, B.Sc (Honours) thesis, School of Math-

ematics, Monash University, Melbourne, Australia, 2019.
[6] Ken-ichi Kawarabayashi and Benjamin Rossman, A polynomial excluded-minor approximation of

treedepth, Journal of the European Mathematical Society 24 (2022), no. 4, 1449–1470 (en).
[7] Neil Robertson and P. D. Seymour, Graph minors. XX. Wagner’s conjecture, J. Combin. Theory Ser.

B 92 (2004), no. 2, 325–357.
[8] Neil Robertson and P. D. Seymour, Graph minors. V. Excluding a planar graph, J. Combin. Theory

Ser. B 41 (1986), no. 1, 92–114.

16

